
ICT365

Software Development Frameworks

Dr Afaq Shah

Unit Testing

In this Topic
What is Unit Testing?

Advantages

Disadvantages

nUnit

nUnitAsp

nUnitForms

Demo

DotNetMock & nMock

nCover

What is TDD?

Test-Driven UI Development

TestDriven .NET

Resources
3

Best Practices for Agile/Lean
Documentation

• http://www.agilemodeling.com/essays/agileDoc
umentationBestPractices.htm

• Ideally, an agile document is just barely good
enough, or just barely sufficient, for the situation at
hand.

• Documentation is an important part of agile software
development projects, but unlike traditionalists who
often see documentation as a risk reduction strategy,
agilists typically see documentation as a strategy
which increases overall project risk and therefore
strive to be as efficient as possible when it comes to
documentation.

• Agilists write documentation when that's the best
way to achieve the relevant goals, but there often
proves to be better ways to achieve those goals than
writing static documentation.

http://www.agilemodeling.com/essays/agileDocumentationBestPractices.htm

Tests are a validation tool…

Introduction

• Check that your code is working as expected by
creating and running unit tests.

• It’s called unit testing because you break down the
functionality of your program into discrete testable
behaviors that you can test as individual units.

• Run unit tests with Test Explorer

• https://msdn.microsoft.com/en-
us/library/hh270865.aspx

• How to: Run Tests from Microsoft Visual Studio

• https://msdn.microsoft.com/en-
us/library/ms182470.aspx

• Quick Start: Test Driven Development with Test
Explorer

• https://msdn.microsoft.com/en-
us/library/hh212233.aspx

https://msdn.microsoft.com/en-us/library/hh270865.aspx
https://msdn.microsoft.com/en-us/library/ms182470.aspx
https://msdn.microsoft.com/en-us/library/hh212233.aspx

Introduction

• Visual Studio Test Explorer provides a flexible and
efficient way to run your unit tests and view their
results in Visual Studio.

• Visual Studio installs the Microsoft unit testing
frameworks for managed and native code.

• Use a unit testing framework to create unit tests,
run them, and report the results of these tests.
Rerun unit tests when you make changes to test
that your code is still working correctly.

• When you use Visual Studio Enterprise, you can run
tests automatically after every build.

Code quality

• Unit testing has the greatest effect on the quality of
your code when it’s an integral part of your software
development workflow.

• As soon as you write a function or other block of
application code, create unit tests that verify the
behavior of the code in response to standard,
boundary, and incorrect cases of input data, and that
check any explicit or implicit assumptions made by the
code.

• With test driven development, you create the unit tests
before you write the code, so you use the unit tests as
both design documentation and functional
specifications.

Unit Testing

nUnit, nUnitAsp, nUnitForms

12

What is Unit Testing?

Unit Test

From Wikipedia, the free encyclopedia.

In computer programming, a unit test is a
procedure used to verify that a particular module of
source code is working properly. The idea about unit
tests is to write test cases for all functions and
methods so that whenever a change causes a
regression, it can be quickly identified and fixed.
Ideally, each test case is separate from the others;
constructs such as mock objects can assist in
separating unit tests. This type of testing is mostly
done by the developers and not by end-users.

13

Advantages

The goal of unit testing is to isolate each part of
the program and show that the individual parts
are correct. Unit testing provides a strict,
written contract that the piece of code must
satisfy. As a result, it affords several benefits.

Unit testing allows the programmer to re-factor
code at a later date, and make sure the module
still works correctly (i.e. regression testing).
This provides the benefit of encouraging
programmers to make changes to the code
since it is easy for the programmer to check if
the piece is still working properly.

14

Advantages

Unit testing helps eliminate uncertainty in the
pieces themselves and can be used in a bottom-
up testing style approach. By testing the parts
of a program first and then testing the sum of
its parts, integration testing becomes much
easier.

Unit testing provides a sort of "living document".
Clients and other developers looking to learn
how to use the class can look at the unit tests to
determine how to use the class to fit their needs
and gain a basic understanding of the API.

15

Advantages

Because some classes may have references to
other classes, testing a class can frequently spill
over into testing another class. A common
example of this is classes that depend on a
database: in order to test the class, the tester
often writes code that interacts with the
database. This is a mistake, because a unit test
should never go outside of its own class
boundary. As a result, the software developer
abstracts an interface around the database
connection, and then implements that interface
with their own mock object. This results in
loosely coupled code, minimizing dependencies
in the system

16

Disadvantages

Unit-testing will not catch every error in the program.
By definition, it only tests the functionality of the
units themselves. Therefore, it will not catch
integration errors, performance problems and any
other system-wide issues. In addition, it may not be
easy to anticipate all special cases of input the
program unit under study may receive in reality.
Unit testing is only effective if it is used in
conjunction with other software testing activities.

It is unrealistic to test all possible input combinations
for any non-trivial piece of software. A unit test can
only show the presence of errors; it cannot show the
absence of errors.

Unit Testing Frameworks

www.junit.org

www.nunit.org

www.xprogramming.com

http://www.junit.org/
http://www.nunit.org/
http://www.xprogramming.com/software.htm

Characteristics of UTFs

• Most UTFs target OO and web languages

• UTFs encourage separation of business and
presentation logic

• Tests written in same language as the code

• Tests are written against the business logic

• GUI and command line test runners

• Rapid feedback

Plugins and Extensions

• You can quickly generate test projects and test methods
from your code, or manually create the tests as you need
them.

• When you use IntelliTest to explore your .NET code, you can
generate test data and a suite of unit tests. For every
statement in the code, a test input is generated that will
execute that statement.

• Test Explorer can also run third-party and open source unit
test frameworks that have implemented Test Explorer add-on
interfaces. You can add many of these frameworks through
the Visual Studio Extension Manager and the Visual Studio
gallery.

• Install third-party unit test frameworks

• https://msdn.microsoft.com/en-au/library/hh598952.aspx

https://msdn.microsoft.com/en-au/library/hh598952.aspx

Example

• MyBank Solution

• Fictional application
called MyBank as an
example.

• Test methods are
written in C# and
presented by using the
Microsoft Unit Testing
Framework for Managed
Code,

• Concepts are easily
transferred to other
languages and
frameworks.

First attempt at a design

Includes an accounts component that represents
an individual account and its transactions with the
bank, and a database component that represents
the functionality to aggregate and manage the
individual accounts.

• We create a MyBank solution that contains two
projects:

• Accounts

• BankDb

First attempt at designing the
Accounts project

• Contains a class to hold basic information about an
account, an interface that specifies the common
functionality of any type of account, like depositing
and withdrawing assets from the account, and a
class derived from the interface that represents a
checking account.

• We begin the Accounts projects by creating the
following source files: …

First attempt at designing the
Accounts project

• AccountInfo.cs defines the basic information for an
account.

• IAccount.cs defines a standard IAccount interface
for an account, including methods to deposit and
withdraw assets from an account and to retrieve the
account balance.

• CheckingAccount.cs contains the CheckingAccount
class that implements the IAccounts interface for a
checking account.

First attempt at designing the
Accounts project

• We know from experience that one thing a
withdrawal from a checking account must do is to
make sure that the amount withdrawn is less than
the account balance.

• So we override the IAccount.Withdaw method in
CheckingAccount with a method that checks for this
condition.

The method might look like this:

public void Withdraw(double amount)

{

if(m_balance >= amount)

{

m_balance -= amount;

}

else

{

throw new ArgumentException(amount,

"Withdrawal exceeds balance!")

}

}

Now that we have some code, it’s time for testing.

Create unit test projects and
test methods

It is often quicker to generate the unit test project and
unit test stubs from your code.

Or you can choose to create the unit test project and tests
manually depending on your requirements.

Generate unit test project and unit test stubs

Create unit test projects and
test methods

From the code editor window, right-click and choose
Create Unit Tests from the context menu

Click OK to accept the defaults to create your unit
tests, or change the values used to create and
name the unit test project and the unit tests.

You can select the code that is added by default to
the unit test methods.

The unit test stubs are created in a new unit test project
for all the methods in the class.

Next

• Add code to the unit test methods to make the
unit test meaningful, and any extra unit tests
that you might want to add to thoroughly test
your code.

Create your unit test project
and unit tests manually

• A unit test project usually mirrors the structure of a single
code project. In the MyBank example, you add two unit test
projects named AccountsTests and BankDbTests to the
MyBanks solution. The test project names are arbitrary, but
adopting a standard naming convention is a good idea.

• To add a unit test project to a solution:

• On the File menu, choose New and then choose Project
(Keyboard Ctrl + Shift + N).

• On the New Project dialog box, expand the Installed node,
choose the language that you want to use for your test
project, and then choose Test.

Create your unit test project
and unit tests manually

• To use one of the Microsoft unit test frameworks, choose
Unit Test Project from the list of project templates.
Otherwise, choose the project template of the unit test
framework that you want to use.

• To test the Accounts project of our example, you would
name the project AccountsTests.

Reference another code project

•In your unit test project, add a reference to the code

project under test, in our example to the Accounts

project.

To create the reference to the code project:

1. Select the project in Solution Explorer.

2. On the Project menu, choose Add Reference.

3. On the Reference Manager dialog box, open the

Solution node and choose Projects. Select the

code project name and close the dialog box.

• Each unit test project contains classes that
mirror the names of the classes in the code
project. In our example, the AccountsTests
project would contain the following classes:

• AccountInfoTests class contains the unit test
methods for the AccountInfo class in the
BankAccount project

• CheckingAccountTests class contains the unit
test methods for CheckingAccount class.

Write your tests

• The unit test framework that you use and Visual
Studio IntelliSense will guide you through writing
the code for your unit tests for a code project. To
run in Test Explorer, most frameworks require that
you add specific attributes to identify unit test
methods. The frameworks also provide a way—
usually through assert statements or method
attributes—to indicate whether the test method has
passed or failed. Other attributes identify optional
setup methods that are at class initialization and
before each test method and teardown methods
that are run after each test method and before the
class is destroyed.

Arrange, Act, Assert

• The AAA (Arrange, Act, Assert) pattern is a
common way of writing unit tests for a method
under test.

• The Arrange section of a unit test method initializes
objects and sets the value of the data that is
passed to the method under test.

• The Act section invokes the method under test with
the arranged parameters.

• The Assert section verifies that the action of the
method under test behaves as expected.

To test the CheckingAccount.Withdraw
method of our example, we can write two
tests:

one that verifies the standard behavior of
the method, and

one that verifies that a withdrawal of more
than the balance will fail.

In the CheckingAccountTests class, we add
the following methods:

[TestMethod]
public void Withdraw_ValidAmount_ChangesBalance()
{

// arrange
double currentBalance = 10.0;
double withdrawal = 1.0; double expected = 9.0;
var account = new CheckingAccount("JohnDoe", currentBalance);
// act
account.Withdraw(withdrawal); double actual = account.Balance;
// assert Assert.AreEqual(expected, actual); }

[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public void Withdraw_AmountMoreThanBalance_Throws()
{

// arrange
var account = new CheckingAccount("John Doe", 10.0);
// act
account.Withdraw(20.0);
// assert is handled by the ExpectedException

}

• Note that Withdraw_ValidAmount_ChangesBalance
uses an explicit Assert statement to determine
whether the test method passes or fails, while
Withdraw_AmountMoreThanBalance_Throws uses the
ExpectedException attribute to determine the success
of the test method. Under the covers, a unit test
framework wraps test methods in try/catch
statements.

• In most cases, if an exception is caught, the test
method fails and the exception is ignored. The
ExpectedException attribute causes the test method
to pass if the specified exception is thrown.

• For more information about the Microsoft Unit
Testing Frameworks, see one of the following
topics:

Writing Unit Tests for the .NET Framework with the
Microsoft Unit Test Framework for Managed Code

• https://msdn.microsoft.com/en-
au/library/hh598960.aspx

Writing Unit tests for C/C++ with the Microsoft Unit
Testing Framework for C++

• https://msdn.microsoft.com/en-
au/library/hh598953.aspx

https://msdn.microsoft.com/en-au/library/hh598960.aspx
https://msdn.microsoft.com/en-au/library/hh598953.aspx

Set timeouts for unit tests

• To set a timeout on an individual test method:

• To set the timeout to the maximum allowed:

[TestMethod]

[Timeout(2000)]

// Milliseconds

public void My_Test()

{ ... }

[TestMethod]

[Timeout(TestTimeout.Infinite)]

// Milliseconds

public void My_Test () { ... }

Run tests in Test
Explorer

When you build the
test project, the
tests appear in
Test Explorer. If
Test Explorer is
not visible, choose
Test on the Visual
Studio menu,
choose Windows,
and then choose
Test Explorer.

• As you run, write, and rerun your tests, the
default view of Test Explorer displays the results
in groups of Failed Tests, Passed Tests,
Skipped Tests and Not Run Tests.

• You can choose a group heading to open the
view that displays all them tests in that group.

• You can also filter the tests in any view by
matching text in the search box at the global
level or by selecting one of the pre-defined
filters.

• You can run any selection of the tests at any
time.

• The results of a test run are immediately
apparent in the pass/fail bar at the top of the
explorer window.

• Details of a test method result are displayed
when you select the test.

Run and view tests

The Test Explorer toolbar helps you discover,
organize, and run the tests that you are
interested in.

You can choose Run All to run all your tests, or choose

Run to choose a subset of tests to run. After you run a

set of tests, a summary of the test run appears at the

bottom of the Test Explorer window.

Select a test to view the details of that test in the bottom

pane. Choose Open Test from the context menu

(Keyboard: F12) to display the source code for the

selected test.

If individual tests have no dependencies that prevent

them from being run in any order, turn on parallel test

execution with the toggle button on the toolbar. This

can noticeably reduce the time taken to run all the tests.

Run tests after every build

• To run your unit tests after each local build,
choose Test on the standard menu, choose Run
Tests After Build on the Test Explorer toolbar.

• Running unit tests after every build is supported
only in Visual Studio Enterprise.

Filter and group the test list

When you have a large number of tests, you can
Type in Test Explorer search box to filter the list
by the specified string. You can restrict your filter
event more by choosing from the filter list.

To group your tests by category,
choose the Group By button.

Q: If I’m using TDD, how do I
generate code from my tests?

A: Use IntelliSense to generate classes and
methods in your project code. Write a
statement in a test method that calls the
class or method that you want to generate,
then open the IntelliSense menu under the
call.

Q: If I’m using TDD, how do I
generate code from my tests?

If the call is to a constructor of the new
class, choose Generate new type from
the menu and follow the wizard to insert
the class in your code project. If the call is
to a method, choose Generate new
method from the IntelliSense menu.

Q: Can I create unit tests that
take multiple sets of data as

input to run the test?

A: Yes. Data-driven test methods let you test a
range of values with a single unit test
method. Use a DataSource attribute for the
test method that specifies the data source
and table that contains the variable values
that you want to test. In the method body,
you assign the row values to variables using
the TestContext.DataRow[ColumnName]
indexer.

For example, assume we add an unnecessary method to the
CheckingAccount class that is named AddIntegerHelper.
AddIntegerHelper adds two integers.

To create a data-driven test for the AddIntegerHelper method,
we first create an Access database named
AccountsTest.accdb and a table named
AddIntegerHelperData. The AddIntegerHelperData table
defines columns to specify the first and second operands of
the addition and a column to specify the expected result.
We fill a number of rows with appropriate values.

The attributed method runs once for each row in the table.
Test Explorer reports a test failure for the method if any
of the iterations fail. The test results detail pane for the
method shows you the pass/fail status method for each
row of data.

[DataSource(@"Provider=Microsoft.ACE.OLEDB.12.0;

Data Source=C:\Projects\MyBank\TestData\AccountsTest.accdb",

"AddIntegerHelperData")]

[TestMethod()]

public void AddIntegerHelper_DataDrivenValues_AllShouldPass()

{

var target = new CheckingAccount();

int x = Convert.ToInt32(TestContext.DataRow["FirstNumber"]);

int y = Convert.ToInt32(TestContext.DataRow["SecondNumber"]);

int expected = Convert.ToInt32(TestContext.DataRow["Sum"]);

int actual = target.AddIntegerHelper(x, y);

Assert.AreEqual(expected, actual);

}

Data-driven unit tests

https://msdn.microsoft.com/en-
au/library/ms182527.aspx

https://msdn.microsoft.com/en-au/library/ms182527.aspx

Q: Can I view how much of my
code is tested by my unit tests?

A: Yes. You can determine the amount of your code that is
actually being tested by your unit tests by using the Visual
Studio code coverage tool. Native and managed languages
and all unit test frameworks that can be run by the Unit Test
Framework are supported.

You can run code coverage on selected tests or on all tests in a
solution. The Code Coverage Results window displays the
percentage of the blocks of product code that were exercised
by line, function, class, namespace and module.

To determine what proportion of your project's

code is actually being tested by coded tests such

as unit tests, you can use the code coverage

feature of Visual Studio.

To guard effectively against bugs, your tests

should exercise or 'cover' a large proportion of

your code.

Code coverage analysis can be applied to both

managed (CLI) and unmanaged (native) code.

Using Code Coverage to Determine

How Much Code is being Tested

Code coverage is an option

when you run test methods

using Test Explorer. The

results table shows the

percentage of the code that

was run in each assembly,

class, and method. In

addition, the source editor

shows you which code has

been tested.

Q: Can I view how much of my
code is tested by my unit tests?

To run code coverage for test methods in a solution,
choose Tests on the Visual Studio menu and then
choose Analyze code coverage.

Coverage results appear in the Code Coverage Results
window.

Code coverage

https://msdn.microsoft.com/en-
au/library/dd537628.aspx

https://msdn.microsoft.com/en-au/library/dd537628.aspx

Q: How can I test methods in
my code that have external

dependencies?

A: Yes. If you have Visual Studio Enterprise, Microsoft
Fakes can be used with test methods that you write by
using unit test frameworks for managed code.

Microsoft Fakes uses two approaches to create substitute
classes for external dependencies.

Stubs generate substitute classes derived from the parent
interface of the target dependency class. Stub methods
can be substituted for public virtual methods of the
target class.

Shims use runtime instrumentation to divert calls to a
target method to a substitute shim method for non-
virtual methods.

Q: How can I test methods in
my code that have external

dependencies?

In both approaches, you use the generated delegates of
calls to the dependency method to specify the behavior
that you want in the test method.

Isolating unit test methods with Microsoft Fakes

https://msdn.microsoft.com/en-au/library/hh549175.aspx

https://msdn.microsoft.com/en-au/library/hh549175.aspx

Q: Can I use other unit test
frameworks to create unit tests?

A: After you restart Visual Studio, reopen your solution to
create your unit tests, and then select your installed
frameworks here:

Your unit test stubs will be created using the selected
framework.

Find and install other frameworks

https://msdn.microsoft.com/en-au/library/hh598952.aspx

https://msdn.microsoft.com/en-au/library/hh598952.aspx

67

nUnit for ASP.net

nUnitAsp is a class library for use within your NUnit tests. It
providesNUnit with the ability to download, parse, and
manipulate ASP.NET web pages.

http://nunitasp.sourceforge.net/quickstart.html

With nUnitAsp, your tests don't need to know how ASP.NET renders controls into
HTML. Instead, you can rely on the nUnitAsp library to do this for you, keeping
your test code simple and clean. For example, your tests don't need to know
that a DataGrid control renders as an HTML table. You can rely on nUnitAsp to
handle the details. This gives you the freedom to focus on functionality
questions, like whether the DataGrid holds the expected values.

ASP.NET MVC Model Testing using NUnit and MOQ

http://www.dotnetcurry.com/aspnet-mvc/1103/aspnet-mvc-
model-testing-using-nunit-moq

Testing an ASP.NET MVC Controller using NUnit

http://www.dotnetcurry.com/aspnet-mvc/1110/testing-mvc-
controller-using-nunit

http://nunitasp.sourceforge.net/quickstart.html
http://www.dotnetcurry.com/aspnet-mvc/1103/aspnet-mvc-model-testing-using-nunit-moq
http://www.dotnetcurry.com/aspnet-mvc/1110/testing-mvc-controller-using-nunit

User Interfaces

• Difficult to write automated tests to, because they
are designed to be exercised by a user and often
hide their programmatic interface.

• Inherent challenges in testing Windows Forms
applications:

Are highly coupled

.Exe assemblies cannot be referenced from the IDE

NUnitForms

• NUnit Extension for testing Windows Forms
applications

70

nUnitForms

nUnitForms is an nUnit extension for unit and
acceptance testing of Windows Forms
applications

nUnit test can open a window and interact with the
controls. The test will automatically manipulate
and verify the properties of the GUI.
nUnitForms takes care of cleaning up the forms
between test, detecting and handling modal
dialog boxes, and verifying that your
expectations for the test are fullfilled.

http://nunitforms.sourceforge.net/

http://nunitforms.sourceforge.net/

Steps to test a WinForms App

1. Place the forms in a separate class library

2. Create an Application Launcher that executes the
forms

3. Reference the class library that contains the forms
in the Test assembly

4. Design the Form

5. Use NUnitForms to write the tests

6. Write the code to pass the tests

72

DotNetMock & nMock

DotNetMock is a dynamic mock-object library for
.NET. Its purpose is to provide a clean API for
rapidly creating mock implementations of
custom objects and verifying that objects
interact with them correctly from unit tests.

NMock is a dynamic mock-object library for .NET.
Its purpose is to provide a clean API for rapidly
creating mock implementations of custom
objects and verifying that objects interact with
them correctly from unit tests.

Mock Objects

• Inherent challenges in testing dependant objects

Objects dependant on ephemeral objects produce
unpredictable behavior

User Interfaces, Databases and the like are
inherently ephemeral

Example

• How can we write a test for GetRate() when the
result of FinancialServicesWS.GetRate() is
unpredictable?

Money

+GetRate(string from,
string to):double

FinancialServices WS

+GetRate(string from,
string to):double

Mock Objects• Solution:

Replace the unpredictable object with a testing
version that produces predictable results

FinancialServicesWS

+GetRate(string from, string
to):double

MockFinancialServicesWS

+GetRate(string from, string
to):double

IFinancialServicesWS

+GetRate(string from, string
to):double

Steps to create a Dynamic
Mock Object with DotNetMock

1. FinancialServicesWS is a proxy generated from
the WSDL of the web service. Refactor the
proxy to extract an interface:
IFinancialServicesWS

2. Create a controller based on the extracted
interface

3. Have the controller create a dynamic mock
object

4. Specify the expected behavior of the mock
object

5. Use the mock object in place of the real object
in the test

Mock Objects

• Advantages of Mock Objects:

Promote design to interfaces

Promote testability and isolation of tests

Promote decoupling

• Challenges of Mock Objects:

More classes to maintain

Requires breaking encapsulation to replace real
object with mock object, sometimes resulting in
less “elegant” code

78

nCover

nCover provides statistics about your code, telling
you how many times each line of code was
executed during a particular run of the
application. The most common use of code
coverage analysis is to provide a measurement
of how thoroughly your unit tests exercise your
code. After running your unit tests under
nCover, you can easily pinpoint sections of code
that are poorly covered and write unit tests for
those portions. Code coverage measurement is
a vital part of a healthy build environment.

Test Driven Development Cycle

Refactoring

Test passes

Implement
Test compiles

but fail

Write
needed API

It does not
compile

Write a test
..for new capability

Red/Green/Refactor

80

TestDriven.NET makes it easy to run unit tests with a single click,
anywhere in your Visual Studio solutions. It supports all versions
of Microsoft Visual Studio .NET meaning you don't have to worry
about compatibility issues and fully integrates with all major unit
testing frameworks including nUnit, MbUnit, & MS Team System.

Mechanics of TDD

• Always start with a failing test

• Quickly write the simplest code needed to pass
the test

• Remove duplication (AKA Refactor)

• Repeat as needed to meet requirements

• Test everything that could possibly break

What can be tested?

• Valid inputs

• Invalid inputs

• Errors, exceptions, and events

• Boundary conditions

• Everything that could possibly break!

TDD Benefits for Developers

• Much less debug time

• Code proven to meet requirements

• Tests become Safety Net

• Eliminate Bug Pong

• Rhythm of Success

TDD Benefits for Business

• Shorter development cycles

• Near zero defects

• Tests become an asset

• Tests are documentation

• Competitive advantage!

Getting started with TDD

• Get some training

• Start with a small visible project

• Shoot for 100% test coverage

• Don’t expect to be perfect

• Expect to improve dramatically in time

• Measure the results

TDD in Legacy Code

• Go Hunting for Bear

• Build the Safety Net

• Work in small increments

• Expect to slow down, then speed up

• Measure the results

Got Bugs?

• Go after your most painful defect

• Write a test to expose it

• Write code needed to fix it

• Refactor

• Repeat

• Measure the results

Tips for Success

• TDD is a skill

• Just Do It

• Insist on achieving 100% coverage

• Measure and Review

• Make Results Visible

• Just Keep Doing It

Test-Driven Development (TDD)

• Is a programming practice

• Unit tests are written before the domain code

• Namely:

Write a test that fails

Write code to make the test pass

Refactor

• Unit Tests and Refactoring are the tools of TDD

Unit Tests

• Test specific aspects of a functionality

• Execute rapidly

• Independent of each other

• Independent of the surrounding environment

• Independent of execution order

• Automated

Refactoring

• Change the internal structure of the code without
changing it’s external behavior.

• Associated with arithmetic factorization:

ab + ac = a(b+c)

• Same result but the expression is simplified.

Characteristics of TDD

• TDD promotes code testability

• Testability is related to:

Strong cohesion

Loose coupling

No redundancy

Encapsulation

• These are good programming practices

• Striving for good tests results in better code

TDD Tenets

• Never write a single line of code unless you have a
failing unit test

• Eliminate Duplication (Refactor mercilessly)

Observation

• It’s harder to write unit tests for components
located at the “edge” of the system:

Web Services

Data Access Layer

User Interface

Conclusion

• Advantages:

Easy to implement

Development of UI can be completely test-driven

Promotes decoupling

Enables creation of automated User Acceptance
Tests

• Challenges:

Setup requires somewhat complex wiring

Conclusion

• TDD let you use tests as

✓A validation tool

✓A documentation tool

✓A design tool

◼ Follow the TDD rules

✓ Be iterative: split your work in small
(requirement) increments

✓ Always start by writing a test

✓ Then implement untill the test passes

✓ And Cleanup! (refactor)

C# Reference

• Unit Testing Framework

• https://msdn.microsoft.com/en-
us/library/ms243147(VS.80).aspx

• Unit Test Basics

• https://msdn.microsoft.com/en-AU/library/hh694602.aspx

• Writing Unit Tests for the .NET Framework with the
Microsoft Unit Test Framework for Managed Code

• https://msdn.microsoft.com/en-us/library/hh598960.aspx

• Get started with developer testing tools

• https://www.visualstudio.com/en-
us/docs/test/developer-testing/getting-
started/getting-started-with-developer-testing

97

https://msdn.microsoft.com/en-us/library/ms243147(VS.80).aspx
https://msdn.microsoft.com/en-AU/library/hh694602.aspx
https://msdn.microsoft.com/en-us/library/hh598960.aspx
https://www.visualstudio.com/en-us/docs/test/developer-testing/getting-started/getting-started-with-developer-testing

Non-MSDN links

• Visual Studio Unit Testing Framework - Wikipedia, the
free encyclopedia

• https://en.wikipedia.org/wiki/Visual_Studio_Unit_Testing
_Framework

• MSTest - Wikipedia, the free encyclopedia

• https://en.wikipedia.org/wiki/MSTest

• c# - Which unit testing framework? - Stack Overflow

• http://stackoverflow.com/questions/2262090/which-unit-
testing-framework

98

https://en.wikipedia.org/wiki/Visual_Studio_Unit_Testing_Framework
https://en.wikipedia.org/wiki/MSTest
http://stackoverflow.com/questions/2262090/which-unit-testing-framework

Java UI Testing

• Start:

https://code.google.com/archive/p/fest/

• Extra:

• http://stackoverflow.com/questions/2575837/u
nit-testing-framework-for-a-swing-ui

• http://stackoverflow.com/questions/5939749/s
wing-ui-testing-library-comparisons-fest-
windowtester-pro-etc

• http://alexruiz.developerblogs.com/?p=160

• Example:

• https://github.com/hakurai/fest-swing-example

https://code.google.com/archive/p/fest/
http://stackoverflow.com/questions/2575837/unit-testing-framework-for-a-swing-ui
http://stackoverflow.com/questions/5939749/swing-ui-testing-library-comparisons-fest-windowtester-pro-etc
http://alexruiz.developerblogs.com/?p=160
https://github.com/hakurai/fest-swing-example

Youtube

• How to implement TDD (Test driven
development) in c# (Csharp) using VSTS
unit testing?

• https://www.youtube.com/watch?v=5gMBGVNR
8wE

• How to write Unit Tests in C#

• https://www.youtube.com/watch?v=8YFZBNFm
0OM

• Excellent Java Eclipse tutorials: Mark Dexter

https://www.youtube.com/watch?v=5gMBGVNR8wE
https://www.youtube.com/watch?v=8YFZBNFm0OM

Resources
• Visual Studio .NET 2005

http://msdn.microsoft.com/vstudio/teamsystem

• Visual Studio .NET 2003 Project Templates for NUnit:

http://www.pontonetpt.com/Downloads/317.aspx

• NUnit

http://www.nunit.org

• DotNetMock

http://sourceforge.net/projects/dotnetmock

• NUnitForms

http://nunitforms.sourceforge.net/

• C# Refactory

http://www.extreme-simplicity.net

• ReSharper

http://www.jetbrains.com/resharper

http://msdn.microsoft.com/vstudio/teamsystem
http://www.pontonetpt.com/Downloads/317.aspx
http://www.nunit.org/
http://sourceforge.net/projects/dotnetmock
http://nunitforms.sourceforge.net/
http://www.extreme-simplicity.net/
http://www.jetbrains.com/resharper

102

Resources

• nUnit http://nunit.org

• nUnitAsp
http://nunitasp.sourceforge.net

• nUnitForms
http://nunitforms.sourceforge.net

• DotNetMock
http://dotnetmock.sourceforge.net

• nMock http://www.nmock.org/

• TestDriven .NET http://www.testdriven.net

• nCover http://http://www.ncover.org

• Open Source Testinghttp://opensourcetesting.org

http://nunit.org/
http://nunitasp.sourceforge.net/
http://nunitforms.sourceforge.net/
http://dotnetmock.sourceforge.net/
http://www.nmock.org/
http://www.testdriven.net/
http://http/www.ncover.org
http://opensourcetesting.org/

References

• “Test-Driven Development By Example”, Kent Beck

• “Test-Driven Development in Microsoft .NET”,
James Newkirk, Alexei Vorontsov

• “Refactoring, Improving The Design Of Existing
Code”, Martin Fowler

• “Patterns Of Enterprise Application Architecture”,
Martin Fowler

• “The Humble Dialog Box”,
http://www.objectmentor.com/resources/articles/TheHumble
DialogBox.pdf

http://www.objectmentor.com/resources/articles/TheHumbleDialogBox.pdf

Other reading:

• Extreme Programming Explained, by Kent Beck

• Anything by Jon Bentley - Programming Pearls,
More Programming Pearls, Writing Efficient
Programs

Acknowledgements

Sources used in this presentation include:

• Refactoring and Code Maintenance by Marty Stepp

• Jay Smith http://nwaDnug.org

• Harry Erwin

105

